Search results for "Galaxies: clusters: general"

showing 10 items of 12 documents

Pressure of the hot gas in simulations of galaxy clusters

2016

We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observa…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusgalaxies: clusters: intracluster mediumCiencias FísicasFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numerical//purl.org/becyt/ford/1 [https]Galaxy groups and clustersIntracluster medium0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; X-rays: galaxies: clusters; galaxies: clusters: intracluster medium010303 astronomy & astrophysicsScalingGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstronomy and Astrophysicsnumerical [methods]//purl.org/becyt/ford/1.3 [https]Function (mathematics)Redshiftgalaxies: cluster [X-rays]CLUSTERS: GENERAL -X-RAYS: GALAXIES: CLUSTERS [GALAXIES]AstronomíaSpace and Planetary Sciencegalaxies: clusters: generalclusters: intracluster medium [galaxies]X-rays: galaxies: clustersCIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Simulation-based marginal likelihood for cluster strong lensing cosmology

2015

Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, $\alpha$ and $\beta$. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected …

FOS: Computer and information sciencesSTATISTICAL [METHODS]Cold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)NUMERICAL [METHODS]Ciencias FísicasPosterior probabilityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesStatistics - ApplicationsCosmologymethods: numerical//purl.org/becyt/ford/1 [https]cosmology: theory0103 physical sciencesCluster (physics)Applications (stat.AP)Statistical physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Galaxy clusterPhysicsmethods: statisticalgravitational lensing: strong; methods: numerical; methods: statistical; galaxies: clusters: general; cosmology: theory010308 nuclear & particles physicsgravitational lensing: strongAstronomy and AstrophysicsBayes factor//purl.org/becyt/ford/1.3 [https]STRONG [GRAVITATIONAL LENSING]RedshiftMarginal likelihoodAstronomíaTHEORY [COSMOLOGY]Space and Planetary Sciencegalaxies: clusters: generalPhysics - Data Analysis Statistics and ProbabilityCLUSTERS: GENERAL [GALAXIES]Astrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Mass-Metallicity Relation from Cosmological Hydrodynamical Simulations and X-ray Observations of Galaxy Groups and Clusters

2018

Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics \texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations ag…

galaxies: clusters: intracluster mediumActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)MetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numericalGalaxy groups and clusters0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters010303 astronomy & astrophysicsScalingGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftStarsgalaxies: clusters: generalclusters: intracluster medium [galaxies]Space and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)galaxies: clusters [X-rays]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Non-thermal pressure support in X-COP galaxy clusters

2018

Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 12 nearby clusters with availab…

galaxies: clusters: intracluster mediumStructure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Cosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesVirial theoremCosmologylaw.inventionsymbols.namesakelaw0103 physical sciencesPlanck010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Settore FIS/05010308 nuclear & particles physicsComputer Science::Information RetrievalAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesX-rays: galaxies: clusters; large-scale structure of Universe; galaxies: clusters: intracluster medium; galaxies: clusters: generalgalaxies: clusters: generalSpace and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)symbolslarge-scale structure of UniverseHaloHydrostatic equilibriumAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: galaxies: clusters - Galaxies: clusters: general - Galaxies: groups: general - Galaxies: clusters: intracluster medium - cosmology: large-scale structureAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

2015

By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of th…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmiscellaneous [cosmology]01 natural sciences7. Clean energymethods: numericalSettore FIS/05 - Astronomia e Astrofisicamethods: numerical; galaxies: clusters: general; cosmology: miscellaneous0103 physical sciencesclusters: general [galaxies]010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStar formationAstronomynumerical [methods]Astronomy and AstrophysicsCosmology: Miscellaneous; Galaxies: Clusters: General; Methods: NumericalAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSupernovagalaxies: clusters: general13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Halocosmology: miscellaneousAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Galaxy clusters and groups in the ALHAMBRA survey

2015

Ascaso, Begoña et al.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of UniverseFOS: Physical sciencesAstrophysicsX-rays galaxies clustersclusters: general [Galaxies]Galaxies clusters generalobservations [Cosmology]Galaxy clusterPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Cosmology: observationsFísicaAstronomyGalaxies: evolutionAstronomy and Astrophysicsevolution [Galaxies]Cosmology observationsCataloguesGalaxies evolutionSpace and Planetary Science[SDU]Sciences of the Universe [physics]X-rays: galaxies: clustersgalaxies: clusters [X-rays]Galaxies: clusters: generalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the Intracluster Medium out to $R_{200}$ in Abell 2319

2018

We present the joint analysis of the X-ray and SZ signals in A2319, the galaxy cluster with the highest signal-to-noise ratio in Planck maps and that has been surveyed within our XMM Cluster Outskirts Project (X-COP). We recover the thermodynamical profiles by the geometrical deprojection of the X-ray surface brightness, of the SZ comptonization parameter, and an accurate and robust spectroscopic measurements of the temperature. We resolve the clumpiness of the density to be below 20 per cent demonstrating that most of this clumpiness originates from the ongoing merger and can be associated to large-scale inhomogeneities. This analysis is done in azimuthally averaged radial bins and in eigh…

galaxies: clusters: general ; galaxies: clusters: intracluster medium – X-rays; galaxies: clusters – intergalactic mediumgalaxies: clusters: intracluster medium – X-raysCosmology and Nongalactic Astrophysics (astro-ph.CO)galaxies: clusters: intracluster medium[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionlawIntracluster medium0103 physical sciencesROSATCluster (physics)Surface brightnessTotal pressure010303 astronomy & astrophysicsGalaxy clusterComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgalaxies: clusters – intergalactic medium[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsSettore FIS/05Astronomy and AstrophysicsAstronomy and AstrophysicX-rays: galaxies: clusterGalaxySpace and Planetary Sciencegalaxies: clusters: generalX-rays: galaxies: clustersintergalactic mediumHydrostatic equilibrium[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations

2018

The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundanc…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusMetallicityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesVirial theoremmethods: numericalgalaxies: clusters: general; galaxies: clusters: intracluster medium; methods: numericalAbundance (ecology)0103 physical sciencesCluster (physics)clusters: general [galaxies]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)clusters: intracluster medium [galaxies]galaxies: clusters: generalSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HaloAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

CODEX Weak Lensing Mass Catalogue and implications on the mass-richness relation

2021

The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 = \alpha \mu + \beta$, with $\mu = \ln (M_{200c}/M_{\mathrm{piv}})$, and $M_{\mathrm{piv}} = 10^{14.81} M_{\odot}$. We find a slope $\alpha = 0.49^{+0.20}_{-0.15}$, normalization $ \exp(\beta) = 84.0^{+9.2}_{-14.8}$ and $\sigma_{\ln \lambda | \mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sun…

COSMOLOGICAL CONSTRAINTSCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLambdaPROFILE01 natural sciences114 Physical sciencesgravitational lensing: weakMAXBCGweak [gravitational lensing]0103 physical sciencesLARGE-SCALE STRUCTUREclusters: general [galaxies]PROBE010303 astronomy & astrophysicsWeak gravitational lensingGalaxy clusterLOCUSSPhysicsTEMPERATURE RELATION010308 nuclear & particles physicsAstronomy and Astrophysicsobservations [cosmology]RedshiftREDUCTIONSpace and Planetary Sciencegravitational lensing: weak; galaxies: clusters: general; cosmology: observationsgalaxies: clusters: generalcosmology: observationsGIANTSGALAXY CLUSTERS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

2018

We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} &gt; 10^{14} M_{\odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the r…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusNUMERICAL [METHODS]Ciencias FísicasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsnumerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clusters [methods]01 natural sciencesmethods: numericalLuminosity//purl.org/becyt/ford/1 [https]GALAXIES: CLUSTERS [X-RAYS]Smoothed-particle hydrodynamics0103 physical sciences010303 astronomy & astrophysicsScalingAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysicsmethods: numerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clustersSettore FIS/05010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsObservable//purl.org/becyt/ford/1.3 [https]RedshiftAstronomíamethods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; Astrophysics - Cosmology and Nongalactic Astrophysicsgalaxies: clusters: generalSpace and Planetary ScienceX-rays: galaxies: clustersCLUSTERS: INTRACLUSTER MEDIUM [GALAXIES]CLUSTERS: GENERAL [GALAXIES]CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct